Reversible bacterial immobilization based on the salt-dependent adhesion of the bacterionanofiber protein AtaA
نویسندگان
چکیده
BACKGROUND Immobilization of microbial cells is an important strategy for the efficient use of whole-cell catalysts because it simplifies product separation, enables the cell concentration to be increased, stabilizes enzymatic activity, and permits repeated or continuous biocatalyst use. However, conventional immobilization methods have practical limitations, such as limited mass transfer in the inner part of a gel, gel fragility, cell leakage from the support matrix, and adverse effects on cell viability and catalytic activity. We previously showed a new method for bacterial cell immobilization using AtaA, a member of the trimeric autotransporter adhesin family found in Acinetobacter sp. Tol 5. This approach is expected to solve the drawbacks of conventional immobilization methods. However, similar to all other immobilization methods, the use of support materials increases the cost of bioprocesses and subsequent waste materials. RESULTS We found that the stickiness of the AtaA molecule isolated from Tol 5 cells is drastically diminished at ionic strengths lower than 10 mM and that it cannot adhere in deionized water, which also inhibits cell adhesion mediated by AtaA. Cells immobilized on well plates and polyurethane foam in a salt solution were detached in deionized water by rinsing and shaking, respectively. The detached cells regained their adhesiveness in a salt solution and could rapidly be re-immobilized. The cells expressing the ataA gene maintained their adhesiveness throughout four repeated immobilization and detachment cycles and could be repeatedly immobilized to polyurethane foam by a 10-min shake in a flask. We also demonstrated that both bacterial cells and a support used in a reaction could be reused for a different type of reaction after detachment of the initially immobilized cells from the support and a subsequent immobilization step. CONCLUSIONS We invented a unique reversible immobilization method based on the salt-dependent adhesion of the AtaA molecule that allows us to reuse bacterial cells and supports by a simple manipulation involving a deionized water wash. This mitigates problems caused by the use of support materials and greatly helps to enhance the efficiency and productivity of microbial production processes.
منابع مشابه
AtaA, a New Member of the Trimeric Autotransporter Adhesins from Acinetobacter sp. Tol 5 Mediating High Adhesiveness to Various Abiotic Surfaces
Acinetobacter sp. Tol 5 exhibits an autoagglutinating nature and noteworthy adhesiveness to various abiotic surfaces from hydrophobic plastics to hydrophilic glass and stainless steel. Although previous studies have suggested that bacterionanofibers on Tol 5 cells are involved in the adhesive phenotype of Tol 5, the fiber that directly mediates Tol 5 adhesion has remained unknown. Here, we pres...
متن کاملAn Acinetobacter trimeric autotransporter adhesin reaped from cells exhibits its nonspecific stickiness via a highly stable 3D structure
Trimeric autotransporter adhesins (TAAs), cell surface proteins of Gram-negative bacteria, mediate bacterial adhesion to host cells and extracellular matrix proteins. However, AtaA, a TAA in the nonpathogenic Acinetobacter sp. strain Tol 5, shows nonspecific, high adhesiveness to abiotic material surfaces as well as to biotic surfaces. AtaA is a homotrimer of polypeptides comprising 3,630 amino...
متن کاملNano-bio Hybrid Material Based on Bacteriorhodopsin and ZnO for Bioelectronics Applications
Bioelectronics has attracted increasing interest in recent years because of their applications in various disciplines, such as biomedical. Development of efficient bio-nano hybrid materials is a new move towards revolution of nano-bioelectronics. A novel nano-bio hybrid electrode based on ZnO–protein for bioelectronics applications was prepared and characterized. The electrode was made by coval...
متن کاملNano-bio Hybrid Material Based on Bacteriorhodopsin and ZnO for Bioelectronics Applications
Bioelectronics has attracted increasing interest in recent years because of their applications in various disciplines, such as biomedical. Development of efficient bio-nano hybrid materials is a new move towards revolution of nano-bioelectronics. A novel nano-bio hybrid electrode based on ZnO–protein for bioelectronics applications was prepared and characterized. The electrode was made by coval...
متن کاملThe Study of Collagen Immobilization on a Novel Nanocomposite to Enhance Cell Adhesion and Growth
Background: Surface properties of a biomaterial could be critical in determining biomaterial’s biocompatibility due to the fact that the first interactions between the biological environment and artificial materials are most likely occurred at material’s surface. In this study, the surface properties of a new nanocomposite (NC) polymeric material were modified by combining plasma treatment and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2017